26. A Supposed Hydrazine Complex of Ruthenium(iII).

By C. K. Prout and H. M. Powell.
A substance previously formulated as $\left[\mathrm{Ru}_{2} \mathrm{Cl}_{2}\left(\mathrm{~N}_{2} \mathrm{H}_{4}\right)_{5}\right] \mathrm{Cl}_{4}$ has been proved to be $\left[\mathrm{RuCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$.

The crystal structure has been determined.
During a search for compounds that might contain hydrazine as a ligand, an investigation was made of the substance reported ${ }^{1}$ to be formed by the reaction of a hot saturated aqueous solution of hydrazinium($\mathbf{1}+$) chloride with Howe's salt, $\mathrm{K}_{2}\left[\mathrm{RuCl}_{5}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, and to have the constitution (A). The material was prepared according to Goremykin's procedure ${ }^{1}$ and had the same measured properties as his product. However, there were

immediate difficulties in the interpretation of the observed X-ray diffraction which suggested that the constitutional formula was erroneous. Analysis for hydrogen agrees with the formula $\left[\mathrm{RuCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}$, and is a much more sensitive test of the two formulæ than the previous analyses for other elements. An X-ray structure determination has been taken to a stage of refinement sufficient to confirm the constitution now assigned.

Crystal Data.- $\left[\mathrm{RuCl}\left(\mathrm{NH}_{3}\right)_{5}\right] \mathrm{Cl}_{2}, M=293 \cdot 2$, orthorhombic bipyramidal, $a=13.34 \pm$ $0.03, b=10.86 \pm 0.03, c=6.76 \pm 0.02, U=979.3 \AA^{3}, D_{m}=2.00$ (by flotation), $Z=4$, $D_{c}=1.989, F(000)=580, \mu=206 \mathrm{~cm}^{-1}$. Space group Pnma ($D_{2 h}^{16}, \mathrm{No} .62$). $\mathrm{Cu}-K_{\alpha}$ radiation, single-crystal oscillation and Weissenberg photographs. Optically biaxial.

Structure.-The intensities were estimated visually from Weissenberg films obtained by the multiple-film technique. Lorentz and polarisation corrections were applied. No correction was applied for absorption but to minimise this effect small crystals (maximum dimension 0.01 mm .) were used.

Whichever formula is assumed there must be four ruthenium atoms in the unit cell. On the basis of absent reflexions alone, the space-group could be Pnma or Pna2. In either of these the four ruthenium atoms are related to each other by two glide-plane symmetry operations. In $P n a 2_{1}$, where the general position is four-fold, this is not compatible with a binuclear complex. In Pnma four ruthenium atoms could formally occupy special positions but none of these is compatible with a binuclear complex. The three principal Patterson projections were evaluated, and were readily interpreted on the assumption of the space group Pnma with ruthenium atoms in the planes of symmetry and so separated as to confirm the absence of a binuclear complex. Patterson peaks of suitable height could be explained by four equivalent chlorine atoms in the plane of symmetry and eight equivalent chlorine atoms in general positions. The first four are linked to ruthenium atoms but the others are not. Fourier F_{o} syntheses were carried

[^0]out phased on these approximate atomic positions and were followed by difference syntheses from which the nitrogen atoms were located and the atomic parameters refined. The observable $F(h k 0)$ and $F(0 k l)$ are restricted in number by systematic absences and their value for refinement of atomic parameters is limited by the overlap of atoms in the mirror plane. A least-squares refinement was carried out with partial three-dimensional data by J. S. Rollett's programme SFLS ${ }^{2}$ on a Ferranti " Mercury" computer. This programme uses anisotropic temperature factors. The refinement resulted in improved atomic parameters. For $550 F(h k l)$ an R value of $27 \cdot 4 \%$, given by the provisional

Table 1.
Observed structure amplitudes and calculated structure factors for $h k l$ [in each set of three columns the first lists the values of h, the second $F_{\text {obs. }}(\times 5)$ and the third $\left.F_{\text {calc. }}(\times 5)\right]$.

[^1]Table 1. (Continued).

Table 2.
Atomic co-ordinates and standard deviations (σ).

	x		y		z	
Ru	$0 \cdot 103$	0.0009	$0 \cdot 25$	0.00	$0 \cdot 180$	0.0019
Cl_{1}	$0 \cdot 474$	0.0027	$0 \cdot 25$	0.00	0.554	0.0074
Cl_{2}	0.146	0.0023	-0.001	0.0032	0.659	0.0046
N_{1}	0.002	0.0062	0.25	0.00	0.412	0.010
N_{2}	0.208	0.0060	0.25	0.00	0.962	0.011
N_{3}	$0 \cdot 226$	0.0056	0.25	0.00	0.385	0.0074
N_{4}	0.101	0.0064	0.056	0.0038	0.193	0.0039

Table 3.
Thermal parameters (all units $10^{-3} \AA^{2}$).

	B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}		B_{11}	B_{22}	B_{33}	B_{23}	B_{13}	B_{12}
Ru	$1 \cdot 1$	$0 \cdot 3$	6.6	0	$-1 \cdot 1$	0	N_{1}	11	13	20	0	6	0
Cl_{1}	1.2	2.7	16.6	0	$5 \cdot 2$	0	N_{2}	11	17	22	0	2	0
Cl_{2}	$3 \cdot 3$	$4 \cdot 7$	11.0	-1.6	1.2	0.8	N_{3}	10	22	8	0	1	0
							N_{4}	1	9	4	-4	3	-2

Table 4.
Interatomic distances (\AA) with their standard deviations (σ), and some bond angles.

$\mathrm{Ru}-\mathrm{Cl}_{1}$	$2 \cdot 34$	0.05	$\mathrm{Cl}_{1}-\mathrm{Ru}-\mathrm{N}_{4}$	$90.9{ }^{\circ}$	$\mathrm{N}_{1}-\mathrm{Ru}-\mathrm{N}_{3}$	$89.1{ }^{\circ}$
$\mathrm{Ru}-\mathrm{N}_{1}$	$2 \cdot 07$	0.09	$\mathrm{Cl}_{1}-\mathrm{Ru}-\mathrm{N}_{2}$	89.9	$\mathrm{N}_{3}-\mathrm{Ru}-\mathrm{N}_{2}$	$89 \cdot 4$
$\mathrm{Ru}-\mathrm{N}_{2}$	2.09	0.09	$\mathrm{Cl}_{1}-\mathrm{Ru}-\mathrm{N}_{3}$	179.3	$\mathrm{N}_{1}-\mathrm{Ru}-\mathrm{N}_{4}$	87.7
$\mathrm{Ru}^{-\mathrm{N}_{3}}$	$2 \cdot 11$	0.08	$\mathrm{Cl}_{1}-\mathrm{Ru}-\mathrm{N}_{1}$	91.6	$\mathrm{N}_{2}-\mathrm{Ru}-\mathrm{N}_{4}$	$93 \cdot 3$
$\mathrm{Ru}-\mathrm{N}_{4}$	$2 \cdot 11$	0.04	$\mathrm{N}_{4}-\mathrm{Ru}-\mathrm{N}_{4}$	$175 \cdot 5$		

parameters deduced from projections only, was refined to 16.9% but could not be further reduced. Calculated standard deviations for interatomic distances lying in the plane of symmetry are higher than were expected. Attempts to improve them by refinement
based on the assumption of space group $P n a 2_{1}$, in which the atoms are not restricted to positions in this plane, were unsuccessful. The agreement already obtained shows that the atomic positions cannot differ greatly from those tabulated. It is possible that some form of disordered structure might give an improved agreement factor; there is no direct evidence of disorder and such structures have not been considered in detail. Table 1 gives the observed and calculated structure factors. The atomic scattering factors for chlorine and nitrogen were taken from Berghuis et al. ${ }^{3}$ For ruthenium(III) the values given by Thomas and Umeda ${ }^{4}$ were used with a correction for anomalous dispersion. ${ }^{5}$

Atomic co-ordinates with standard deviations are listed in Table 2 and thermal parameters in Table 3. The standard deviations are minimum values since they were obtained from a set of normal equations derived on the assumption that changes in co-ordinates of one atom do not affect the co-ordinates of the others. Some bond lengths and angles are given in Table 4. The analysis is considered accurate enough to establish the chemical constitution. The compound is structurally similar (distorted fluorite type) to others ${ }^{6}$ of general formula $\left[\mathrm{MA}_{5} \mathrm{~B}\right] \mathrm{X}_{2}$, including $\left[\mathrm{Rh}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} .{ }^{7}$ The ruthenium complex has nearly regular octahedral bonds. The $\mathrm{Ru}-\mathrm{Cl}$ distance $2.34 \AA$ is comparable with Mathieson, Mellor, and Stephenson's ${ }^{8} 2 \cdot 36$ in $\mathrm{Ru}_{2} \mathrm{Cl}_{10} \mathrm{O}$. For $\mathrm{Ru}-\mathrm{N}$ there is no comparable measurement in an ammine. The values, between 2.07 and 2.11 , are reasonable when compared with similar distances in related compounds.

The compound is presumably produced by autoxidation of hydrazine, apparently catalysed by some species such as $\mathrm{Ru}(\mathrm{III})$ in solution. In support of this is the observation that the gas evolved in the reaction is nitrogen, not hydrogen chloride as reported. This possibility of autoxidation, which should be taken into account in the preparation of hydrazine complexes generally, may perhaps be turned to advantage when the desired product is an ammine.

Experimental.-The material was prepared by Goremykin's method and consisted of small yellow-brown distorted octahedra, as described. The two principal refractive indices readily accessible by immersion methods were 1.69 and 1.72 , as measured approximately with the light transmitted from a tungsten-filament lamp. Goremykin gives $1 \cdot 684,1 \cdot 72$ for an unstated wavelength. The magnetic moment, 2.07 B .M., is the same as that listed by Goremykin if allowance is made for the different formula that he uses. It corresponds to one unpaired electron per ruthenium atom and does not distinguish between the two formulæ. The prepared sample gave an X-ray powder diffraction pattern identical with that of an authentic specimen of the complex $\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}_{3} \mathrm{Cl}_{2}\right.$ prepared by a method that did not involve the use of hydrazine. The same two samples gave solutions with identical absorption spectra (Found: Ru, 34.7; N, $24 \cdot 3 ; \mathrm{H}, 5 \cdot 3 ; \mathrm{Cl}, 35 \cdot 8 . \quad\left[\mathrm{Ru}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Cl}^{2} \mathrm{Cl}_{2}\right.$ requires $\mathrm{Ru}, 34 \cdot 4 ; \mathrm{N}, 23 \cdot 9 ; \mathrm{H}, 5 \cdot 1 ; \mathrm{Cl}, 36 \cdot 3$. Calc. for $\mathrm{Ru}_{2}\left(\mathrm{~N}_{2} \mathrm{H}_{4}\right)_{10} \mathrm{Cl}_{8}: \mathrm{Ru}, 35 \cdot 3 ; \mathrm{N}, 24 \cdot 3 ; \mathrm{H}, 3 \cdot 5 ; \mathrm{Cl}, 36 \cdot 9 \%$).

We thank Mr. A. R. Powell, F.R.S., for an authentic sample of the pentammine, D.S.I.R. for a maintenance grant (to C. K. P.), and the Oxford University Computing Laboratory.

[^2]
[^0]: ${ }^{1}$ Goremykin, Izvest. Akad. Nauk S.S.S.R., Otdel. khim. Nauk, 1947, 427.

[^1]: ${ }^{2}$ Mills and Rollett, " Computing Methods and the Phase Problem in X-Ray Crystal Analysis," Pergamon Press, London, 1961, p. 107.

[^2]: ${ }^{3}$ Berghuis, Haanappel, Potters, Loopstra, MacGillavry, and Veenendaal, Acta Cryst., 1955, 8, 478.
 4 Thomas and Umeda, J. Chem. Phys., 1957, 26, 293.
 ${ }^{5}$ Dauben and Templeton, Acta Cryst., 1955, 8, 841.
 "Wykoff, "Crystal Structures," Interscience Publ., Inc., New York, 1948-1960, Vol. III.
 ${ }^{7}$ West, Z. Krist., 1935, 91, 181.
 ${ }^{8}$ Mathieson, Mellor, and Stephenson, Acta Cryst., 1952, 5, 185.

